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1. In t roduct ion  

During the second year of the research program efforts have continued to concen- 

trate on the development of the numerical methods that will form the computational 

part of the turbulence closure scheme. Studies have continued on the wave model for the 

two-dimensional shear layer. This configuration is being used as a test case for the clo- 

sure schemes. Several numerical schemes for the solution of the non-separable Rayleigh 

equation have been developed. This solution is required for the closure scheme in more 

complex geometries. The most efficient method found is a hybrid scheme that combines 

both pseudospectral and finite difference techniques. In addition, conformal transforma- 

tion techniques have been developed to transform the arbitrary geometry of the jet to a 

simple computational domain. We have also continued our study of the shock structure in 

arbitrary geometry jets and multiple jets. These developments are described briefly below. 

2. Numerical  Methods fo r  Arbitrary Geometry  Jets 

In this section we describe the progress we have made in the solution of the non- 

separable form of the Rayleigh equation. This efficient solution of this equation for ar- 

bitrary geometries is a key element in our turbulence closure scheme. The two areas in 

which progress has been made are (i) the development of a algorithm for the solution of 

the equation and (ii) the development of conformal transformation methods to transform 

the jet’s arbitrary geometry into a simpler computational domain. 

2.1 Numer ica l  Algorithm: Pseudospec t ra l  Hybr id  Scheme. 

A method has been developed to determine the eigensolutions of the Rayleigh equation 

in flows of arbitrary geometry. The equation to be solved is: 



with boundary conditions : 

p is finite and p t 0 at  infinity, (2.2) 

where p is the pressure fluctuation, TY(z,y) is the axial mean velocity, ,O is the axial 

wavenumber, R = w - PW, and w is the wave frequency. The technique that has been 

developed to solve (2.1) and (2.2) is a “hybrid” scheme. The method consists of combining 

a finite difference approximation with a pseudospectral approximation. Consider a solution 

of the form: 

PN = C a ( z j , y ) f j ( z ) ,  (2.3) 

where the summation is taken over 0 to N .  Here the fj’s are functions defined by: 

where, 

and where TN -J the 7-t 

(-1)j+1(1- 52)Tk(z)  
C j N Z ( Z  - Z j )  

fj(z) = 9 

~j = cos(Tj /N)  for 0 5 j 5 N ,  

order Chebyshev polynomial. In ac 

(2.5) 

lition, co = CN = 2 and 

C j  = 1 for 1 5 j 5 N - 1. 

The discretization of (2.1) is obtained by substituting (2.3) and noticing that (2.4) 

and (2.5) imply: 
1, if j = i; 
0,  if j ,L. fj(zi) = 

The resulting discretization is given by: 

for 1 

C ~ ~ ~ ~ ~ ’ ( J ~ ~ C ~ : I I L S  of the gradient of W .  

IC 5 N - 1. In (2.7) the functions H and G are defined i r  terms of 2p/n and t’ 
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To outline the determination of the eigenvalues for the Rayleigh problem consider 

the model shear domain: 

D := {(z,y) E R2 - 15 x , y  L 1). 

Now, to determine the boundary conditions for the computational domain, D notice that 

the lines y f 1 cor;.?spond to the edges of the shear layer. On the boundaries of the shear 

layer the axial mean velocity W becomes constant. Whence, (3.1) reduces to the He:mholtz 

equation that has a known analytic soli.tion, say: 

where R, would involve Bessel or Hankel functions and exponentials in polar coordinates. 

In addition, for the lines x = f l  a boundary condition based on the periodicity of the 

pressure fluctuation is assumed. For example of the model domain D, set p ( f 1 , y )  = 0. 

This could correspond to  pressure fluctuations that are odd about both the major and 

minor axes of the jet. The determination of the eigenvalues proceeds as follows: 

i) The derivatives in (2.7) for the spectral direction are determined as functions of the 

collocation points, xj. 

ii) Equation (2.7) is recast as a two-dimensional vector allowing the use of an explicit 

integration scheme in the y- direction. 

iii) The function &(xi, +l), from (2.9) and its derivative in the y-direction are evaluated 

at  the collocation points on the line y = +l. This gives the initial values for the 

discretized equations that are then integrated to y = 0. 

iv) Step iii) is repeated for t:le functions R n ( x j ,  +1) for n 5 N - 2. 

v) Steps iii) and iv) are repeated, starting the integration at  y = -1 and using the 

functions R,(zi, -1) as the starting conditions. 

vi) The integrated solutions are then matched at  y = 0. The matchiilg cf the so'.:tt ?s 

and their derivatives gives a 2N x 2N matrix, M(P). 
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vii) The value of p satisfying det(M(P)] = 0 for a fixed frequency is then computed 

by providing a first guess for p and then iteratively repeating steps iii) through vi) 

updating the value /? after each iteration. 

A code implementing this “hybrid” scheme has been developed for 

circular and elliptic geometries. The code has been validated for the circular case 

and in some elliptic ases. Further verification of the elliptic jet case is depends on the 

coordinate transformations described below. For the circular jet a velocity profile of the 

form: 

W ( r )  = (I + tanh((1 - r)/28])/2, (2.10) 

has been assumed, where 8 is the momentum thickness of the mixing layer. The elliptic 

test case assumes an ellipse of aspect ratio 2 at the half velocity point of the mean velocity 

profile. 

2.2 Computational Domains for Jets of Arbitrary Geometry 

2.2.1. Introduction - An efficient method establishing the computational domain for 

jets of arbitrary geometry is currently being developed. The technique to be used involves 

generating conformal mappings which carry standard computational domains into the cross 

sections of a given jet. 

To begin the discussion, the general types of geometries encountered in jet flows will 

be outlined. Two topologically distinct cross sections occur in a jet. The first type of cross 

section corresponds to the annular shear region surrounding the jet’s potential core. Since 

the velocity in the potential core is approximately uniform, the computation needs only to 

be performed in the annular shear region. Therefore, annular domains constitute the first 

type of geometry in jet flows: doubly connected regions. 

The second general type of geometry encountered in jet flows corresponds to the region 

,+ 2 jt:; downstream of the PoL. ntia; core. In this case, the computation must be peTformed 
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in the entire cross section of the flow. Thus, the second class of geometry are the simply 

co inected, disc-like regions. 

Tbe goal of the research on jet geometry is to establish coordinate transformations 

which map standard computational regions into cross sections of a arbitrary jet. The 

s !  andard regions are chosen to support the numerical solution of the equations modeling 

jet flows. Since an arbitrary jet has two distinct types of geometries, two standard types 

of conformal maps and computational regions result. The following sections will outline 

the two types of conformal maps to be used and give an example for the doubly connected 

region of an elliptic jet. 

2.2.2. Simply Connected Regions - The standard computational region for this case is 

the unit disc centered at the origin of the complex plane. A conformal transform, F, map- 

ping the unit disc into a simply connected jet cross section will be generated numerically 

using a generalization of the method of Theodorsen ref. 1. To understand the geometry, 

consider Figure 1. Theodorsen’s map carries the circle in the computational domain onto 

the outer edge of the shear layer in physical space. 

Let the boundary of the jet cross section be described in polar coordinates in physical 

space as: 

w = w ( 4 )  = R ( 4 )  exp(id), (2.11) 

where, R(4)  is assumed to be a 27r periodic function, and the region bounded by R(4)  is 

required to be starlike with respect to the origin. From the development of Henrici ref. 2, 

Theodorsen’s method goes as follows: 

i) Assume the conformal map takes the form of 

F (z )  = zexp[h(z)], 

where H ( z )  is an unknown function to be approximated. 
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Figure 1: Sketch of Transformation for Simply Connected Domain 



ii) Evaluate (2.12) on the unit circle to obtain: 

x q = P ( i e ) l  = ln{q95(8)]}, 

SH[exp(i8)] = d(8) - 8. 
(2.13) 

iii) Next, solve for the relation between the angle.$, in physical space and the angle, 8, in 

computational space which may be shown to be expressed as: 

where K denotes the principal value integral: 

iv) Once equation (2.14) is known, equation (2.12) is used to generate the mapping from 

the disc to the jet cross section. 

Equation (2.14) is solved numerically by introducing the iterative equation: 

for k = 0, 1, 2, ..., where A(8)dsf4(t9) - 8. At each step an FFT is used to approximate 

(2.16). An initial guess for Ak is given by 

AO(8) = 8. 

2.2.3. Doubly Connected Regions - The standard doubly connected computational 

domain is the circular annulus. The annulus will be normalized such that the outer bound- 

ary has radius one. The inner boundary radius, denoted by p,  cannot be chosen arbitrarily 

but must be determined by the method used to construct the conformal map from the an- 

nulus to the jet cross section. The method developed by Theodorsen for simply connected 

*I.# \ t m i : ~ .  ."I&:, extended by Garrick ref. 3 to generate conformal transformations for annular 
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regions. The Theodorsen - Garrick scheme is the method that will be employed for doubly 

connected jet cross sections. The geometry is shown in Figure 2 

The Theodorsen - Garrick map, I?, carries the outer boundary of the annulus onto the 

outer boundary of the jet cross section. Likewise, the inner annular boundary is assigned 

to  the jet's inner cross section boundary. 

To develop the map I?, let 

z; = Ri(q5) exp(i4) for i = O , 1 ,  (2.17) 

denote 27r periodic functions describing the boundaries of the jet cross section. It is required 

that the region, bounded by these functions, be starlike. Referring to Henrici ref. 2, the 

construction of I' goes as follows: 

i) Assume that there exists a conformal map of the form: 

q.4 = z""P[G(Z)l, 

where G(z)  is the unknown function to be approximated. 

ii) Since G is defined on an annulus, it will have a Laurent series of the form: 

M _ -  

G ( z )  = ao,o + 2  E Anzn, 
i n f t y  
z#O 

where 

An = (ao,n - Pnal ,n) / ( l  - 2"). 

(2.18) 

(2.19) 

(2.20) 

The ai,n's, i = 0, 1, depend on the Fourier coefficients of the logarithm of the boundary 

functions given by (2.17). However, these Fourier coefficients depend on the angle, 0, 

in the computational domain, and may not be directly computed until a relation of 

the form q5(0) = f (0)  is known. 
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Figure 2: Sketch of Transformation for Doubly Connected Domain 



iii) Therefore, a relationship between 4 and 8 must be determined. This is given by the 

pair c Y integral equations: 

(2.21) 

(2.22) 
G,4(8) = K,d(d), 

where K is defined as in equation (2.15) and 

and where, 

1 

Finally, p is given by: 

iv) Once equations (2.21) to (2.23) have been solved for q5i and for p the Fourier coef- 

ficients for ln{Ri[q&(O)]) can be determined and substituted into equation (2.19) to 

give the Laurent series for G(z ) .  Combining G with equation (2.18) then gives the 

desired conformal map. 

This set of nonlinear integral equations can be rapidly solved for the angle variations, 

q5i, and for p by using the iterative approximation to equations (2.21): 

where for an approximated p the operators defined by equations (2.22) are determined. The 

iterative scheme is very eFncient because, all of the functions considered are approximated 
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using an FFT. At each step in the iteration a new value of p is given by the exponential of 

the difference of the zero coefficients in the Fourier series, of the functions, ln{Ri[+i,m(6)]}. 

2.2.4. General Remarks - The iterative scheiiies described in the sections above con- 

verge very rapidly for nearly circular regions. However, as the physical domains becoine 

more eccentric, Le., for high aspect ratios, the methods converge slowly, and in some cases, 

not at  all. This problem is fairly easy to overcome by using preliminary conformal trans- 

formations which carry the physical domain into a region which has a lower asp. ct ratio. 

Moreover, all the iteration schemes may be recast using underrelaxation. Details of the 

underrelaxation technique for simply connected regions are described in Gutknecht ref. 4. 

It should be recalled that conformal maps locally preserve the angles between mapped 

curves. Therefore, an orthogonal coordinate grid in the computational domain will trans- 

late into an orthogonal grid in the physical space. Since the coordinates are orthogonal, 

the metric tensor associated with conformal maps will have only diagonal terms which are 

nontrivial. Therefore, conformal maps introduce a minimum number of derivative terms 

in the transformed equations of motion. 

2.2.5. Example - In this section an example of the conformal transform mapping the 

annulus onto a shear layer bounded by two confocal ellipses will be examined. The ellipses 

are defined by: 

2 + (4/3)y2 = 1, (2.25) 

(16/9)z2 + (16/5)y2 = 1. (2.26) 

Equation (2.25) defines the outer edge of the shear layer, while equation (2.26) defines the 

inner edge. In order to estimate the accuracy of the map, an error measure will be defined 

for the points mapped to the boundaries of the cross section. Therefore, set 

def Error Measure = (F(I ' (R ,8)]  - 11, 
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where F denotes either equation (2.25) or (2.26) and R = 1 or p depending on F .  

Let N denote the number of data points used to compute the FFT of the boundary 

functions, and let 19 denote the angle in the computational space. Calculations of 

the error measure are given in Table 1. 

The following figures, 3a and 3b, show a computational grid and its image 

in the physical domain for the numerical example exhibited here. For the figures: 

N=1024 and the error is x O(10-5). 

2.3 Shock Structure in Arbitrary Geometry Jets 

Models have also been developed to describe the shock structure and instabiltiy 

waves in single and multiple jets of arbitrary geometry. The initial results of this 

study were given by Morris, Bhat and Chen ref. 5 .  This paper, which is attached 

as an appendix to this report, described the use of a boundary element method to 

determine the shock spacing in jets of arbitrary geometry represented by a vortex 

sheet. This topic has been submitted for publication in the Journal of Sound 

and Vibration. At present we are extending the analysis to include the effects 

of finite mixing region thickness and the effects of the small-scale turbulence for 

both single and multiple jets. The results for the finite mixing layer thickness are 

described here. 

2.3.1 Effects of finite mixing layer thickness on shock structure in jets of 

arbitrary geometry - A finite difference technique has been developed to study 

the shock structure and hydrodynamic stability of jets with arbitrary exit geometry. 

A body-fitted coordinate system is used which is particularly suited for problems 

associated with ; .bitrary exit geometry. This finite difference scheme includes the 

effect, of a finite mixing layer thickness by using a realistic and continuous mean 
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Case 1: The image of the circle of R = p 

N e X 

64 0 .749165 
128 0 .74979 1 
256 0 .749947 
512 0 .749986 

528549 
.529897 

256 4 4  .530222 
512 ~ 1 4  ,530: J2 

64 ~ 1 4  
128 T I 4  

.oooooo 64 T I 2  
128 T I 2  .oooooo 
256 0 .oooooo 
512 T I 2  .oooooo 

Case 2: The image of the circle R = 1 

N e 5 

64 0 
128 0 
256 0 
512 0 

.999086 

.999771 

.999943 

.999985 

64 x i 4  .706094 
128 7d4 .706856 
256 ~ 1 4  .707044 
512 ~ 1 4  .707091 

64 4 2  .oooooo 
128 T I 2  .oooooo 
256 T I 2  .oooooo 
512 4 2  .oooooo 

Case 3: The value of p 

Y 
.oooooo 
.oooooo 
.000:300 
.oooooo 

.394927 

.395195 

.395262 

.395278 

.562340 

.559885 

.559236 
,559072 

Y 

,000000 
.oooooo 
.oooooo 
.oooooo 

.612594 
,612424 
.612385 
,612375 

.867770 

.866468 

.866136 

.866053 

Error 
.002230 
.000590 
.or 139 
.000035 

.004254 

.001042 

.000260 

.0000G7 

.011924 

.003 110 

.000787 
,000197 

Error 

.001826 

.000457 

.000114 

.000028 

.001068 

.000270 

.000068 

.000017 

.004034 

.001023 

.000256 

.000064 

64 .701323 
128 .701.456 
256 .701489 
512 .70?497 
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profile. The method and the results for circular and elliptic jets are described 

below. 

Figure 4 shows the regions of a typical jet cross-section and the curvilinear 

coordinate system. The potential core region is bounded by the curve C1 and an  

(s, n) coordinate system is used to represent it. The mixing layer is bounded by the 

curve CZ.  The coordinates s and n are measured along and normal to the curve 

C1 respectively. The radius of curvature, R of curve C1 is a function of s only. 

Thus, the equation describing the curve C1 is all that  is required to describe the 

coordinate system. 

The governing equations for a compressible, inviscid fluid including the curva- 

ture effects are given by, 

dP 
Pat + (1 + n / R ) )  as an d z  ( 1 + n / R ) ) R  an' 

-- - - av pu dv dV d V  P U Z  - + pv- + pw- - 

dW pu aw aw d W  dP - + p z - - - + p w - - - = - - - - .  'dt + (1 + n / R ) )  a s  d n  d Z  az 

U 

(1 + n / R ) )  az 

U dP dP dPl 
a s  an a z j  
- + v - + w - .  

W h ~ r e  (u ,  v ,  w )  are the velocity components in tht (s, n, z )  directions respectively, 

and p and T are the thermodyncmic pressure and temperat -e respectively. 
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Figure 4: Sketch of Jet Cross Section and Coordinate System. 



The general form of separable solution for the fluctuating pressure, when the 

mean velocity and density are taken to be independent, locally, of the axial distance 

is given by: 

p ( s ,  n, z ,  t )  = $(s, n) exp[i(kz - ut) ] ,  

where k is a wavenumber and w is the radian frequency. 

The pressure fluctuation then satisfies the Rayleigh equation, 

where, s1 = (w-kU)  and the flow is assumed to be isothermal. This latter restriction 

may be readily removed. 

For an arbitrarily shaped jet U is a function of both s and n. Thus a separable 

solution in s and n is generally not available and one resorts to a numerical solution 

in the mixing layer. Along the interior edge of this region and in the potential core 

of the jet, the mean velocity is a constant. In the ambient fluid surrounding the 

jet the properties are also uniform. Thus on the inner and the outer boundaries 

of the mixing layer, a separable form of solution may be obtained. In general, 

a separable form of solution cannot be obtained in the ( s , n )  cowdinate system. 

Thus, the general separable solution is obtained in ( r , 6 )  polar coordinates and 

the relationship between the (.,e) and ( s ,n )  coordinates is used to transform the 

solution to the (s, n)  coordinate system. This doesn’t pose any extra problems while 

dealing with arbitrary exit geometries. 

2.3.2 Numerical Calculations - The numerical method used here is identical to 

that used earlier, ref. 5, and hence, the deiails of the method are not given here. The 
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only difference is that we are now integrating along lines normal to the potential 

core and not along radial lines. 

The mean velocity profile is taken to be, 

U ( n )  = Uj exp[- h12(q )~ ] ,  where q = n/6. 

6 is the local half-width of the jet inixing layer. The relationship between h, the 

potential core radius, and b is obtained from an integral form of the axial momentum 

equation. 

Figures 5 ,  6 and 7 show the variation of the axial wave number (lowest), which 

is inversely related to the shock spacing, as a function of mixing layer thickness and 

Mach number. Figure 5 shows the result for a circular jet at Mj = 1.4 and it can be 

seen that it compares well with the earlier work. Figure 6 compares the results for 

an elliptic jet of aspect ratio = 2. For small values of 6 the spacing approaches that 

given by the vortex sheet model. Here, comparison is made with the results froin 

the vortex sheet model and for 6 = 0.01 and 0,001. The agreement is very good 

for the Mach number range considered. Figure 7 shows the results for a circular 

jet and an elliptic jet of aspect ratio = 2. In all these cases, only the lowest wave 

number associated with the axisymmetric mode has been sought. 

The results obtained here using the (s, n) coordinate system are in good agree- 

ment with the earlier work. The advantage of this method is that it is particularly 

suited for problems posed by arbitrary exit geometry. It should be noted that an 

inviscid model is used here and thus the calculations do not reflect the dissipative 

effect of the shear layer turbulence. The next stage of analysis is to include this 

viscous effect which would simply convert the equation satisfied by the pressure 

fluctuations from the Rayleigh equation to an Orr-Sommerfield equation. 
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The method described here can be used for other jet geometries, but a t  present, 

due to lack of experimental mean flow data at high speeds, it has not been imple- 

mented for, say rectangular and triangu1a.r jets. 

3. Turbulence Closure Scheme 

This part of the work is concerned with the prediction of the mean flow prop- 

erties of turbulent circular jets. A wave model is used to simulate the large-scale, 

coherent structures that dominate not only jets but also other free shear flows like 

mixing layers and wakes. Once the modeling procedure has been developed it will 

be extended to more complex geometries using the methods described in the pre- 

ceding sections. At the present stage we are focussing on the validation of t h e  wave 

model and the development of an in-depth understanding of the physical character- 

istics of the wave structures. This is being assisted by studying a two-dimensional 

incompressible free mixing layer. This will provide guidelines for more complex ap- 

plications of the model. The equations used in the present wave model formulation 

are the continuity and the momentum equations of the long time-averaged proper- 

ties for the mean flow, Vi,  and of the wave-like large-scale structures, ui. These 

are 

where 



The nonlinear wave development may be simulated by introducing an ampli- 

tude function A( x )  and describing the large-scale coherent structures in wave-like 

form: 

The amplitude of the wave-like disturbances is determined by the kinetic energy 

equation for the large-scale motions, 

(ui < u:ui >) + viscous terms 
d 

d x j  
- -  

where 

< q > =  - IT' q dt, T2 << TI 
T2 0 

Our previous calculations, ref. 6 have shown that the influence of the small-scale 

structures cannot be neglected. This is especially important on the low-veloci ty 

side of the mixing layer. It has also been shown experimentally ref. 7 that the 

contribution to the long time-averged Reynolds stresses from the large and small 

scale components may be equally important in fully-developed mixing layers. A 

split-spectrum approach was thus adopted ref. 8, which assumes that some of the 

turbulent kinetic energy is contained in the small-scale motions. A computer pro- 

gram implementing an interactive approach that links the long time-averaged flow, 

the wave-like, large-scale motions, and the small-scale fluctuations has been dc- 

veloped. The small-scale, non-coherent stresses may be modeled initially using an 

eddy-viscosity form. lation, that is, 
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The starting mean velocity profile was taken from experimental iesults for a 

free mixing layer. It was found that in the long taI region of the velocity profile 

the negative production of the large-scale stru tures prevented the flow from ac- 

celerating and stopped the mixing region from growing. Figure 8 gives the mean 

velocity profiles in the streamwise direction. The deceleration effect can be clearly 

seen. Similar results were found for a two-stream mixing layer. For a free mixing 

layer, the acccuracy of the measured mean flow data on the low-speed are subject 

to error due to the rapid variations in the instantaneous flow direction. Thus it is 

possible that the waves driven by the mean flow see a “mean” different from that 

obtained from a long time-average, especially at places where the fluctuations may 

actually modify the “mean” flow as they pass by. 

We also found that the amplitude of the waves grew exponentially. It is known 

from experiments, however, that the amplitude grows exponentially for only a short 

distance downstream 

7ij which appears in 

before saturating. In our models it is the residual stress tensor 

the wave kinetic energy equation in the form 

that is responsible for the draining of the energy from the waves. The residual 

stresses were simulated by the eddy-viscosity model. The constant in the model 

was taken to be the same as that in the eddy-vicosity model for the small-scale 

Reynolds stresses. It was found that the term thus calculated was far too small to 

represent the amount of energy that would be transfered from the large-scale to 
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that is responsible for the draining of the energy from the waves. The residual stresses 

were simulated by the eddy-viscosity model. The constant in the model was taken to be 

the same as that in the eddy-vicosity model for the small-scale Reynolds stresses. It was 

found that the term thus calculated was far too small to represent the amount of energy 

that would be transfered from the large-scalc to the small-scale motions. The amplitude 

of the waves, therefore, grew essentially without limit. To verify this, we simulated the 

gross effects of this term by 
k3/2 - c -  

1 

where C is a constant and 1 is a local length scale. This is based on dimensional reasoning 

and the assumption that the rij scale with the kinetic energy, k ,  of the wave motions. Part 

of the turbulent kinetic energy is then taken away from the motion of the wavy compo- 

nents and limits their amplitude. Figure 9 shows the development of the mean stream-wise 

velocity component calculated using this model. We also compared the variations of the 

wave amplitude in these two cases. The results are shown in figure 10. The amplitude 

function initially grows exponentially and then flattened. This agrees with experimental 

findings, ref. 8. Thus, a good model for these residual stresses is crucial since the coher- 

ent structures dominate the flow development and their amplitude must be detern:ined. 

Unfortunately, little experimental data is available regarding these stresses. 

Several approaches are now being developed to model this energy transfer mechanism. 

On-going efforts also include using the kinetic energy equation for the small-scale motion 

to estimate the velocity scale in the eddy viscosity model. The equation for the small-scale 

turbulent kinetic energy is 

1 < -uiui. > + viscous t erms  
d - .u.- 

3axj 2 
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Figure 9: Variation of Mean Velocity with Axial Distance. 
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Figure 10: Variation of Wave Amplitude with Axial Distance. 



the small-scale motions. The amplitude of the waves, therefore, grew essentially 

without limit. To verify this, we simulated the gross effects of this term by 

where C is a constant and 1 is a local length scale. This is based on dimensional 

reasoning and the assumption that the 7i; scale with the kinetic energy, k, of the 

wave motions. Part of the turbulent kinetic energy is then taken away from the 

motion of the wavy components and limits their amplitude. Figure 9 shows the de- 

velopment of the mean stream-wise velocity component calculated using this model. 

We also compared the variations of the wave amplitude in these two cases. The re- 

sults are shown in figure 10. The amplitude function initially grows exponentially 

and then flattened. This agrees with experimental findings, ref. 8. Thus, a good 

model for these residual stresses is crucial since the coherent structures dominate 

the flow development and their amplitude must be determined. Unfortunately, little 

experimental data is available regarding these stresses. 

Several approaches are now being developed to model this energy transfer 

mechanism. On-going efforts also include using the kinetic energy equation for 

the small-scale motion to estimate the velocity scale in the eddy viscosity model. 

The equation for the small-scale turbulent kinetic energy is 

1 
, < -uIuI > + viscous t e rms  

a - u. -  
' a x j  2 

Note that the equation must be solved simultaneously with the mean flow 

equations. Initially the modeling of each term in the equation is performed in a 

similar way to that of traditional closure schemes. 
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